from Model import Classifier import numpy as np X = np.load( 'processed_data/x.npy') Y = np.load( 'processed_data/y.npy') test_X = np.load( 'processed_data/test_x.npy') test_Y = np.load( 'processed_data/test_y.npy') print( X.shape ) print( Y.shape ) print( test_X.shape ) print( test_Y.shape ) classifier = Classifier( number_of_classes=2 , maxlen=171 ) #classifier.load_model( 'models/model.h5' ) parameters = { 'batch_size' : 100 , 'epochs' : 1 , 'callbacks' : None , 'val_data' : ( test_X , test_Y ) } classifier.fit( X , Y , parameters ) classifier.save_model( 'models/model.h5') loss , accuracy = classifier.evaluate( test_X , test_Y ) print( "Loss of {}".format( loss ) , "Accuracy of {} %".format( accuracy * 100 ) )