30 lines
747 B
Python
30 lines
747 B
Python
|
|
from Model import Classifier
|
|
import numpy as np
|
|
|
|
X = np.load( 'processed_data/x.npy')
|
|
Y = np.load( 'processed_data/y.npy')
|
|
test_X = np.load( 'processed_data/test_x.npy')
|
|
test_Y = np.load( 'processed_data/test_y.npy')
|
|
|
|
print( X.shape )
|
|
print( Y.shape )
|
|
print( test_X.shape )
|
|
print( test_Y.shape )
|
|
|
|
classifier = Classifier( number_of_classes=2 , maxlen=171 )
|
|
#classifier.load_model( 'models/model.h5' )
|
|
|
|
parameters = {
|
|
'batch_size' : 100 ,
|
|
'epochs' : 1 ,
|
|
'callbacks' : None ,
|
|
'val_data' : ( test_X , test_Y )
|
|
}
|
|
classifier.fit( X , Y , parameters )
|
|
classifier.save_model( 'models/model.h5')
|
|
|
|
loss , accuracy = classifier.evaluate( test_X , test_Y )
|
|
print( "Loss of {}".format( loss ) , "Accuracy of {} %".format( accuracy * 100 ) )
|
|
|